(Alkama
et al. 2022; Cao et al. 2022; Chen et al. 2022; Ding et al. 2022a; Ding et al.
2022b; Gao et al. 2022; Guo et al. 2022; Huang et al. 2022; Jia et al. 2022a;
Jia et al. 2022b; Jiang et al. 2022; Jin et al. 2022; Li et al. 2022a; Li et
al. 2022b; Liang et al. 2022a; Liang et al. 2022b; Liu et al. 2022a; Liu et al.
2022b; Lu et al. 2022; Ma and Liang 2022; Ma et al. 2022a; Ma et al. 2022b; Ma
et al. 2022c; Ma et al. 2022d; Ma et al. 2022e; Ma et al. 2022f; Song et al.
2022a; Song et al. 2022b; Xiao et al. 2022a; Xiao et al. 2022b; Xie et al.
2022; Xu et al. 2022a; Xu et al. 2022b; Zhan and Liang 2022; Zhang et al.
2022a; Zhang et al. 2022b; Zhang et al. 2022c; Zhang et al. 2022d; Zhang et al.
2022e; Zhang et al. 2022f; Zhang et al. 2022g)
Papers
published in 2022
1)
Alkama, R., Forzieri, G., Duveiller, G.,
Grassi, G., Liang, S., & Cescatti, A. (2022). Vegetation-based
climate mitigation in a warmer and greener World. Nature Communications, 13:606,
doi:610.1038/s41467-41022-28305-41469
2)
Cao,
Y., Liang, S., Sun, L., Liu, J., Cheng, X., Wang, D., Chen, Y., Yu, M.,
& Feng, K. (2022). Trans-Arctic shipping routes expanding faster than the
model projections. Global Environmental
Change, 73, 102488
3)
Chen, J., He, T., & Liang, S. (2022).
Estimation of Daily All-wave Surface Net Radiation with Multispectral and
Multitemporal Observations from GOES-16 ABI. IEEE Transactions on Geoscience and Remote Sensing
4)
Ding,
A., Liang, S., & et al (2022a). Improving the asymptotic radiative
transfer model to better characterize the pure snow hyperspectral bidirectional
reflectance. IEEE Trans. Geosci. Remote
Sens., doi: 10.1109/TGRS.2022.3144831
5)
Ding,
A., Ma, H., Liang, S., & He, T. (2022b). Extension of the Hapke
model to the spectral domain to characterize soil physical properties. Remote Sensing of Environment, 269,
112843
6)
Gao,
X., Liang, S., Wang, D., Li, Y., He, B., & Jia, A. (2022).
Exploration of a novel geoengineering solution: lighting up tropical forests at
night. Earth System Dynamics,
13,219-230
7)
Guo,
T., He, T., Liang, S., Roujean, J.-L., Zhou, Y., & Huang, X. (2022).
Multi-decadal analysis of high-resolution albedo changes induced by
urbanization over contrasted Chinese cities based on Landsat data. Remote Sensing of Environment, 269,
112832
8)
Huang,
X., Zheng, Y., Zhang, H., Lin, S., Liang, S., Li, X., Ma, M., &
Yuan, W. (2022). High spatial resolution vegetation gross primary production
product: Algorithm and validation. Science
of Remote Sensing, 100049
9)
Jia,
A., Liang, S., & Wang, D. (2022a). Generating a 2-km, all-sky,
hourly land surface temperature product from Advanced Baseline Imager data. Remote Sensing of Environment, 278,
113105
10)
Jia,
A., Wang, D., Liang, S., Peng, J., & Yu, Y. (2022b). Global Daily
Actual and Snow-Free Blue-Sky Land Surface Albedo Climatology From 20-Year
MODIS Products. Journal of Geophysical
Research: Atmospheres, 127, e2021JD035987
11)
Jiang,
F., Xie, X., Wang, Y., Liang, S., Zhu, B., Meng, S., Zhang, X., Chen,
Y., & Liu, Y. (2022). Vegetation greening intensified transpiration but
constrained soil evaporation on the Loess Plateau. Journal of Hydrology, 614, 128514
12)
Jin,
H., Li, A., Liang, S., Ma, H., Xie, X., Liu, T., & He, T. (2022).
Generating high spatial resolution GLASS FAPAR product from Landsat images. Science of Remote Sensing, 6, 100060
13)
Li,
R., Wang, D., Liang, S., Jia, A., & Wang, Z. (2022a). Estimating
global downward shortwave radiation from VIIRS data using a transfer-learning
neural network. Remote Sensing of
Environment, 274, 112999
14)
Li,
S., Jiang, B., Liang, S., Peng, J., Liang, H., Han, J., Yin, X., Yao,
Y., Zhang, X., Cheng, J., Zhao, X., Liu, Q., & Jia, K. (2022b). Evaluation
of nine machine learning methods for estimating daily land surface radiation
budget from MODIS satellite data. International
Journal of Digital Earth, 15, 1784-1816
15)
Liang,
H., Jiang, B., Liang, S., Peng, J., Li, S., Han, J., Yin, X., Cheng, J.,
Jia, K., Liu, Q., Yao, Y., Zhao, X., & Zhang, X. (2022a). A global
long-term ocean surface daily/0.05° net radiation product from 1983–2020. Scientific Data, 9, 337
16)
Liang,
T., Liang, S., Zou, L., Sun, L., Li, B., Lin, H., He, T., & Tian, F.
(2022b). Estimation of Aerosol Optical Depth at 30 m Resolution Using Landsat
Imagery and Machine Learning. Remote
Sensing, 14, 1053
17)
Liu,
W.H., Shi, J.C., Liang, S., Zhou, S.G., & Cheng, J. (2022a).
Simultaneous retrieval of land surface temperature and emissivity from the FengYun-4A
advanced geosynchronous radiation imager. International
Journal of Digital Earth, 15, 198-225
18)
Liu,
X., He, T., Sun, L., Xiao, X., Liang, S., & Li, S. (2022b). Analysis
of Daytime Cloud Fraction Spatio–Temporal Variation over the Arctic During 2000–2019
from Multiple Satellite Products. Journal
of Climate, 1-53
19)
Lu,
J., He, T., Liang, S., & Zhang, Y. (2022). An Automatic Radiometric
Cross-Calibration Method for Wide-Angle Medium-Resolution Multispectral
Satellite Sensor Using Landsat Data. IEEE
Transactions on Geoscience and Remote Sensing, 60, 1-11
20)
Ma,
H., & Liang, S. (2022). Development of the GLASS 250-m leaf area
index product (version 6) from MODIS data using the bidirectional LSTM deep
learning model. Remote Sensing of
Environment, 273, 112985
21)
Ma,
H., Liang, S., Xiong, C., Wang, Q., & Jia, A. (2022a). Global land
surface 250-m 8-day Fraction of Absorbed Photosynthetically Active Radiation
(FAPAR) product from 2000 to 2020. Earth
System Science Data Discussions, 1-22
22)
Ma,
H., Liang, S., Zhu, Z., & He, T. (2022b). Developing a Land
continuous Variable Estimator to generate daily land products from Landsat
data. IEEE Transactions on Geoscience and
Remote Sensing, 1-16
23)
Ma,
H., Xiong, C., Liang, S., Zhu, Z., Song, J., Zhang, Y., & He, T.
(2022c). Determining the accuracy of the landsat-based land continuous Variable
Estimator. Science of Remote Sensing,
100054
24)
Ma,
R., Xiao, J., Liang, S., Ma, H., He, T., Guo, D., Liu, X., & Lu, H.
(2022d). Pixel-level parameter optimization of a terrestrial biosphere model
for improving estimation of carbon fluxes with an efficient model–data fusion
method and satellite-derived LAI and GPP data. Geoscientific Model Development, 15, 6637-6657
25)
Ma,
Y., He, T., Liang, S., Wen, J., Gastellu-Etchegorry, J.-P., Chen, J.,
Ding, A., & Feng, S. (2022e). Landsat Snow-Free Surface Albedo Estimation
Over Sloping Terrain: Algorithm Development and Evaluation. IEEE Transactions on Geoscience and Remote
Sensing, 60, 4408914, doi:4408910.4401109/TGRS.4402022.3149762
26)
Ma,
Y., He, T., Liang, S., & Xiao, X. (2022f). Quantifying the impacts
of DEM uncertainty on clear-sky surface shortwave radiation estimation in
typical mountainous areas. Agricultural
and Forest Meteorology, 327, 109222
27)
Song,
D.-X., Wang, Z., He, T., Wang, H., & Liang, S. (2022a). Estimation
and validation of 30 m fractional vegetation cover over China through
integrated use of Landsat 8 and Gaofen 2 data. Science of Remote Sensing, 6, 100058
28)
Song,
Z., Liang, S., & Zhou, H. (2022b). Top-of-Atmosphere Clear-Sky
Albedo Estimation Over Ocean: Preliminary Framework for MODIS. IEEE Transactions on Geoscience and Remote
Sensing, 60, 4203409, doi:4203410.4201109/TGRS.4202021.3116620
29)
Xiao,
X., He, T., Liang, S., Liu, X., Ma, Y., Liang, S., & Chen, X.
(2022a). Estimating fractional snow cover in vegetated environments using MODIS
surface reflectance data. International
Journal of Applied Earth Observation and Geoinformation, 114, 103030
30) Xiao, X., He, T., Liang,
S., & Zhao, T. (2022b). Improving fractional snow cover retrieval from
passive microwave data using a radiative transfer model and machine learning
method. IEEE Transactions on Geoscience
and Remote Sensing
31)
Xie,
Z., Yao, Y., Zhang, X., Liang, S., Fisher, J.B., Chen, J., Jia, K.,
Shang, K., Yang, J., Yu, R., Guo, X., Liu, L., Ning, J., & Zhang, L.
(2022). The Global LAnd Surface Satellite (GLASS) evapotranspiration product
Version 5.0: Algorithm development and preliminary validation. Journal of Hydrology, 610, 127990
32)
Xu,
J., Liang, S., & Jiang, B. (2022a). A global long term (1981–2019)
daily land surface radiation budget product from AVHRR satellite data using a
residual convolutional neural network. Earth
System Science Data 14, doi:10.5194/ess-5114-5191-2022
33)
Xu,
J., Liang, S., Ma, H., & He, T. (2022b). Generating 5 km
resolution 1981–2018 daily global land surface longwave radiation products from
AVHRR shortwave and longwave observations using densely connected convolutional
neural networks. Remote Sensing of
Environment, 280, 113223
34)
Zhan,
C., & Liang, S. (2022). Improved estimation of the global
top-of-atmosphere albedo from AVHRR data. Remote
Sensing of Environment, 269, 112836
35) Zhang, G., Ma, H.,
& Liang, S. (2022a). Estimating 250-m Land Surface and Atmospheric
Variables From MERSI Top-of-Atmosphere Reflectance. IEEE Transactions on Geoscience and Remote Sensing
36)
Zhang,
G., Ma, H., Liang, S., Jia, A., He, T., & Wang, D. (2022b). A
machine learning method trained by radiative transfer model inversion for
generating seven global land and atmospheric estimates from VIIRS
top-of-atmosphere observations. Remote
Sensing of Environment, 279, 113132
37)
Zhang,
Y., Liang, S., et al. ,(2022c). Estimation of land surface incident
shortwave radiation from geostationary Advanced Himawari Imager and Advanced
Baseline Imager observations using an optimization method. IEEE Transactions on Geoscience and Remote Sensing, DOI:
10.1109/TGRS.2020.3038829
38)
Zhang,
Y., Liang, S., & He, T. (2022d). Estimation of Land Surface Downward
Shortwave Radiation Using Spectral-based Convolutional Neural Network Methods: a
case study from the Visible Infrared Imaging Radiometer Suite (VIIRS) Images. IEEE Transactions on Geoscience and Remote
Sensing, 10.1109/TGRS.2022.3210990
39)
Zhang,
Y., Liang, S., Zhu, Z., Ma, H., & He, T. (2022e). Soil moisture
content retrieval from Landsat 8 data using ensemble learning. ISPRS Journal of Photogrammetry and Remote
Sensing, 185, 32-47
40)
Zhang,
Y., Liu, J., Liang, S., & Li, M. (2022f). A New Spatial–Temporal
Depthwise Separable Convolutional Fusion Network for Generating Landsat 8-Day
Surface Reflectance Time Series over Forest Regions. Remote Sensing, 14, 2199
41) Zhang, Y., Ma, J.,
Liang, S., Li, X., & Liu, J. (2022g). A stacking ensemble algorithm for
improving the biases of forest aboveground biomass estimations from multiple
remotely sensed datasets. Giscience &
Remote Sensing, 1-16, doi:10.1080/15481603.15482021.12023842